# Hierarchies # Hierarchies are important for explanatory variables. There are three types supported by PiArgus. ## FlatHierarchy ## The `FlatHierarchy` is used by default if no hierarchy is specified. All codes add up to a single total. ```python import piargus as pa datacol = ["A", "B", "C", "B", "A"] hierarchy = pa.FlatHierarchy(total_code="Total") ``` This creates a simple structure where all values are aggregated into one total. ```{mermaid} graph LR; Total --> A; Total --> B; Total --> C; ``` ## LevelHierarchy ## A `LevelHierarchy` is used when the hierarchical relationships are encoded directly within the data. ```python import piargus as pa datacol = ["11123", "11234", "23456"] hierarchy = pa.LevelHierarchy(levels=[2, 3], total_code="Total") ``` In this example, the first two digits represent a higher-level grouping, and the next 3 digits represent a more detailed level within that group. ```{mermaid} graph LR; Total --> 11; Total --> 23; 11 --> 123; 11 --> 234; 23 --> 456; ``` ## TreeHierarchy ## A `TreeHierarchy` is used for complex hierarchies, typically stored in `.hrc` files. ```python import piargus as pa datacol = ["PV20", "PV21", "PV22"] hierarchy = pa.TreeHierarchy.from_hrc("provinces.hrc", total_code="NL01") ``` These hierarchies have a tree-like structure. ```{mermaid} graph LR; NL01 --> LD01; NL01 --> LD02; LD01 --> PV20; LD01 --> PV21; LD02 --> PV22; ``` ### Creating a TreeHierarchy programmatically You can also create a TreeHierarchy programmatically, without relying on an external `.hrc` file. ```python import piargus as pa hierarchy = pa.TreeHierarchy(total_code="NL01") hierarchy.create_node(["LD01", "PV20"]) hierarchy.create_node(["LD01", "PV21"]) hierarchy.create_node(["LD02", "PV22"]) hierarchy.to_hrc('provinces.hrc') ``` ## Attaching a hierarchy to inputdata To apply a hierarchy to your data, simply pass the hierarchy as part of the `MicroData` or `TableData` constructor: ```python import piargus as pa pa.MicroData(data_df, ..., hierarchies = {"region": region_hierarchy}) ``` This will apply the specified `region_hierarchy` to the `region` column in your data.